Disassembler

Benjamin Lin | Hamza Siddiqui
Keziah May | Maxwell Wenger

Di1sassembk

Keziah)I %‘el

Benjamin Lir gbmz |k dJ\l

\

Overview

e IO
* OPCODES
 EA

* Integration
e Issues/Simulator Bugs

* Conclusions

‘nput/Output

Comprehensive list of 1tems completed and

/0

Prompt User
for starting
address

Valid input?

Prompt User
for Ending
Address

Print Out
Current
Address

Read in
opcode word

Set ending
address as
ending
address

Set starting
address as
current
address

Print 4
spaces

Pass variable
to opcodes
EA

Increment
Address

Recieve
updated
current
address

& Disassembler
Updated yesterday

3 Todo 0 In progress

@ 10: clarify input prompt
#50 opened by MayKeziah

() 10: Add quit function
#51 opened by MayKeziah

() 10: Sanity checks on input
#49 opened by MayKeziah

Automated as = To do Manage Automated as In progress

Automated as

0 BLOCKED

In progress

Q. Filter cards

36 Done

(O HEXOUT_ Subroutine

#24 opened by maxwenger

(O MSGOUT_ Codeeblock

#23 opened by maxwenger

(% Identify MOVE instruction

#5 opened by maxwenger

(% Identify ADDA
#7 opened by maxwenger

(% Identify ADD instruction

#6 opened by maxwenger

(% sizein 87
#37 opened by MayKeziah

i Opcodes/test&size
#36 opened by MayKeziah

Manage Automated as Done

Manage

/0

Done

1.
2.
3.
4.
5.
6.
7.
8.

Prompt for start address

Prompt for end address

Read instruction in memory to register
Display current address and tab

Call OPCODE module

Increment address pointer

Loop through memory to end address

Loop prompt for input

OPCODES

Comprehensive list of 1tems completed.

OPCODES

OPWORD isolate bits One-to-one One-to-many Word
decoder [\ 12-15 switch case switch case [| NOT FOUND

Y

—_—

word decoder

‘| print opword Size decoder

-

. current address

: number to print . Buffer to print

: base for D1 : End of
Category

: shift count %64 : —y

. copy instruction

_ EA
: const subroutine

. stack pointer

OPCOD.

L]
@p

put next instruction in

_ADDQ
_MOVEQ

@ mgpeelm o) | |

0 S I N T S B T W
Nu
No

No

OPCOD.

L]

w)
0
3
1)

]
X
o
0
t KX
=
[\]
r..
0
o

decode & display opword, size, and tab

Z|w

O

o

One to Many

2
g
)
B

4

e
n
P!

, , LSR, ROL, ROR
(BGT, BLE, BEQ), BRA
JSR, LEA, MOVEM, NOT

MOVE.W, MOVEA.W

MOVE.L, MOVEA.L

=
0]
=

14

o]
Qflnlo
Q|| O

EA

Comprehensive list of 1tems completed.

Subroutine Mapping

The following lists what
OPCODES each subroutine
addressing decodes.

_MOVE
_LEA
MOVEQ
_ADDQ
_ARITH
OR, AND
MOVEM
_BCC
NOT
SHIFT

ROL, ROR

JSR

MOVE, MOVEA
LEA

MOVEQ

ADDQ

ADD, SUB, ADDA,

MOVEM

Bce, BRA

NOT

ASR, ASL, LSR, LSL,

JSR

OPCODE

Decoded Data *MOVE*CK

Print Data

_MOVEQ _CK
Decoded Data

Print Data

Decoded Data JAPBQ CK

Print Data

Subroutines
The subroutines _MOVE, MOVEQ,
_ADDQ, ARITH, MOVEM, BCC,
NOT, SHIFT, and JSR are the
primary subroutines interfaced by
OPCODES. The ones with _CK are
really helper functions that | added,
which check for errors in the passed
in data and help format the data
before sending it to print.

There are possibly 4-6 more helper

subroutines nested in each non-_CK
subroutine, but | didn't list them here
since they're very repetitive and their

names make less sense.

Decoder Input

AB - Intruction Pointer

Decoded Data JARITH_CK

_MOVEM_CK

Print Data

Print

Decoded Data

Print Data

Subroutine

Properly Formatted Print Data

Decoded Data

Print Data

Decoded Data

Print Data

Properly Formatted Print Data

Data
The Decoded Data is a collection of
variables used to store and keep
track of the source and destination
addresses. The following is a list of
the variables.
SIZE size of instruction
SRCMODE source mode
_SRCREG source register
DESTMODE destination mode
DESTREG destination register
_SRCSIZE source imm. size
SRCIMV source imm. value
_DESTSIZE destination imm. size
_DESTIMV destination imm. value
NEXTPTR If A6 is moved
Not all OPCODES contain the same
addressing information, so that's
where _CK comes in to correct it.

Returns to Loop Again

L]

Done

Implement provided interface subroutines for OPCODES

Create error handling for each subroutine

Create printing function for each subroutine

Decode all required Effective Addressing Modes:
Data Register Direct
Address Register Direct
Address Register Indirect
Immediate Data
Address Regilister Indirect with Post 1ncrementing
Address Register Indirect with Pre decrementing
Absolute Long Address
Absolute Word Address

‘ntegration

Comprehensive list of 1tems completed.

Integration

Integration

NEXT OPWORD _ . }*
Instruction in A6 Instruction in A6 Instruction in A6 Instruction i

/O OPCODES

NEXT ‘ _EOP_ _*(
Instruction in A6 Instruction in A6 Instruction in A6

J »OPCODES » EA

Integration

—>

{I/O OPCODES EA
IO/OPCODE Interface

IO Required OPCODE Provided

e oo
OPCODE/EA Interface: All return

OFCODE Required o oh providea
Cmove_ Tww

LEA LE

woveg wowe
Cemeosag_ [ano
CRreos_ et
Cewove_ [wovw
(s [=c

evor__—————— [

Ceorsmier_ [emer

JSR Js
OPCODE/IO Interface

OPCODE Required IO Provided

EOP NEXT

Ssues

What we struggled with and how we respond

Issues

Along the way, these concepts slowed us down:
* Remembering to clear registers
* Incrementing/decrementing the memory pointer

* Integration miscommunication
* Naming conventions
* Planning register usage

* Agreeing on which function does what
* Handling errors
* Standardizing error handling
* Using wrong size

* Tracking test cases before integration

Issues

Error Handling Display Standards:

* OPCODES
Invalid OPCODE:
XXXX DATA YYYY
Memory Error Hex instruction unable to decode

address Display located at XXXX in Memory

Invalid size:

XXXX ADDQ.X OP1,0P2
Memory Error EA’s display for
address size this instruction
display
 EA
Invalid operand
1A00 MOVE . W <invalid EA mode>, D1
1A02 MOVE . L (Ad)+, <invalid EA mode>

1A02 MOVE .B <invalid EA mode>, <invalid EA mode>

Issues

Invalid size:
XX XX ADDQ.X OP1,0P2

A

Not all opcodes fc

Error

size

display
Some one-to-n

opword inste

Conclusions

Advice for future CSS432 students.

Conclusions

* Start early

* Plan interfaces and naming conventions

* Dedicate registers to specific tasks
* Create a list of test cases for each OPCODE and EA
* Find patterns to categorize OPCODES and EA

* Test and Commit to your branch often

* Meet often to confirm your integration plans
* Integrate early

* Do extensive 1ntegration testing
* Test error handling cases

* Try not to cry

